Testing the Paradox of Enrichment along a Land Use Gradient in a Multitrophic Aboveground and Belowground Community
نویسندگان
چکیده
In the light of ongoing land use changes, it is important to understand how multitrophic communities perform at different land use intensities. The paradox of enrichment predicts that fertilization leads to destabilization and extinction of predator-prey systems. We tested this prediction for a land use intensity gradient from natural to highly fertilized agricultural ecosystems. We included multiple aboveground and belowground trophic levels and land use-dependent searching efficiencies of insects. To overcome logistic constraints of field experiments, we used a successfully validated simulation model to investigate plant responses to removal of herbivores and their enemies. Consistent with our predictions, instability measured by herbivore-induced plant mortality increased with increasing land use intensity. Simultaneously, the balance between herbivores and natural enemies turned increasingly towards herbivore dominance and natural enemy failure. Under natural conditions, there were more frequently significant effects of belowground herbivores and their natural enemies on plant performance, whereas there were more aboveground effects in agroecosystems. This result was partly due to the "boom-bust" behavior of the shoot herbivore population. Plant responses to herbivore or natural enemy removal were much more abrupt than the imposed smooth land use intensity gradient. This may be due to the presence of multiple trophic levels aboveground and belowground. Our model suggests that destabilization and extinction are more likely to occur in agroecosystems than in natural communities, but the shape of the relationship is nonlinear under the influence of multiple trophic interactions.
منابع مشابه
Aboveground and belowground arthropods experience different relative influences of stochastic versus deterministic community assembly processes following disturbance
BACKGROUND Understanding patterns of biodiversity is a longstanding challenge in ecology. Similar to other biotic groups, arthropod community structure can be shaped by deterministic and stochastic processes, with limited understanding of what moderates the relative influence of these processes. Disturbances have been noted to alter the relative influence of deterministic and stochastic process...
متن کاملConsistently inconsistent drivers of microbial diversity and abundance at macroecological scales.
Macroecology seeks to understand broad-scale patterns in the diversity and abundance of organisms, but macroecologists typically study aboveground macroorganisms. Belowground organisms regulate numerous ecosystem functions, yet we lack understanding of what drives their diversity. Here, we examine the controls on belowground diversity along latitudinal and elevational gradients. We performed a ...
متن کاملLinking aboveground and belowground interactions via induced plant defenses.
Plants have a variety of chemical defenses that often increase in concentration following attack by herbivores. Such induced plant responses can occur aboveground, in the leaves, and also belowground in the roots. We show here that belowground organisms can also induce defense responses aboveground and vice versa. Indirect defenses are particularly sensitive to interference by induced feeding a...
متن کاملCoupling of soil prokaryotic diversity and plant diversity across latitudinal forest ecosystems
The belowground soil prokaryotic community plays a cardinal role in sustaining the stability and functions of forest ecosystems. Yet, the nature of how soil prokaryotic diversity co-varies with aboveground plant diversity along a latitudinal gradient remains elusive. By establishing three hundred 400-m(2) quadrats from tropical rainforest to boreal forest in a large-scale parallel study on both...
متن کاملCarbon storage in seagrass soils: long-term nutrient history exceeds the effects of near-term nutrient enrichment
The carbon sequestration potential in coastal soils is linked to aboveground and belowground plant productivity and biomass, which in turn, is directly and indirectly influenced by nutrient input. We evaluated the influence of longterm and near-term nutrient input on aboveground and belowground carbon accumulation in seagrass beds, using a nutrient enrichment (nitrogen and phosphorus) experimen...
متن کامل